

Pergamon

0040-4039(94)01078-1

SmI₂ Mediated Reductive Addition of Bis-Phenylsulfones to Ketones

S. Chandrasekhar, Jurong Yu, and J. R. Falck*

Departments of Molecular Genetics and Pharmacology University of Texas Southwestern Medical Center Dallas, Texas 75235 USA

C. Mioskowski*

Université Louis Pasteur, Laboratoire de Synthèse Bio-Organique associé au CNRS, Faculté de Pharmacie, 74 route du Rhin BP 24, F-67401 Illkirch (Prance)

Key Words: β-hydroxyphenylsulfone, desulfonylation, alkylation, diiodosamarium.

Abstract: SmI₂ mediates the *in situ* reductive addition of geminal bis-phenylsulfones to unhindered ketones at room temperature affording β-hydroxyphenylsulfones in good to excellent yields.

In the preceding report,¹ we describe a mild and efficient procedure for the stepwise reductive cleavage of geminal bis-phenylsulfones 1² using lithium naphthalenide in THF at -78°C. The resultant α -sulfonyl carbanions 2 readily participate in a wide range of nucleophilic reactions including alkylations to create new carbon-carbon bonds.³ However, in common with α -metalated sulfones generated by more conventional methods, addition of 2 to ketones is often unsatisfactory.⁴ This important limitation has been attributed to facile reversion of the initial adduct to starting materials and has been obviated in only a few cases by transposing the reaction components, adding BF₃·Et₂O, or *in situ* trapping.⁵ Herein, we disclose that SmI₂ mediates the reductive addition of geminal bis-phenylsulfones to ketones affording tri- and tetrasubstituted β -hydroxyphenylsulfones 3 in good to excellent yields (eq 1).^{6,7}

The results obtained with a cross-section of typical geminal bis-phenylsulfones are compiled in Table I.⁸ Ketone additions using the parent bis-sulfone (entry 1), i.e., bis(phenylsulfonyl)methane (Aldrich Chem. Co.), as well as mono- and di-substituted examples (entries 2 and 3, respectively) proceeded smoothly in less than 15 min at ambient temperature in THF. Optimum yields require 3 equivalents of SmI_2 ; more SmI_2 does not improve the yield and less leads to incomplete reactions. Significantly, addition to the carbonyl, but not desulfonylation, is completely suppressed in the presence of HMPA (10 equiv).^{6,7a} A moderate preference for equatorial attack (4:1 ax/eq alcohols,⁹ entry 2) is consistent with the stereochemical outcome between other organometallics and unbiased cyclic ketones.¹⁰

Entry	Pie Sulfono	Flogtrophile	Product	Viold ⁸ 9/
1	PhO ₂ S PhO ₂ S			71
2	SO ₂ Ph PhO ₂ S	∘∕∕+		77 ⁶
3	PhO ₂ S SO ₂ Ph Me	o-	PhO ₂ S Me Ph	85
4	SO₂Ph PhO₂S ∕ Ph	0-√	Ph HO	80
5	SO ₂ Ph PhO ₂ S	•∽	Ph HO	81
6	SO ₂ Ph PhO ₂ S	H	PhO ₂ S Ph	62°
7	PhO ₂ S PhO ₂ S	o-{\)	HO SO ₂ Ph	92
8	PhO ₂ S PhO ₂ S	0-		86
9	SO ₂ Ph O PhO ₂ S		Me OH PhO₂S	71 ⁴
10		Ph	PhO ₂ S	72

Table I. Sml₂ Mediated Reductive Addition of Bis-Phenylsulfones

^a Based on isolated, chromatographically homogeneous material. ^b4:1 mixture of ax/eq alcohols.^cSingle diastereomer as determined by ¹³C NMR and chromatographic analysis.^d10:1 diastereomeric mixture.

Benzylic (entry 4) and allylic (entries 5 and 6) bis-sulfones are also suitable substrates and show no tendency towards over-reduction under the reaction conditions. In the latter conjugated examples, neither γ -addition nor olefin migration are observed.¹¹ Despite steric hindrance, the synthetically useful bicyclic adducts in entries 7 and 8 are isolated in good yield. The intramolecular version of this reaction, is illustrated in entry 9 by preparation of a cyclopentanol as a 10:1 diastereometric mixture.¹²

The exact nature of the intermediates involved in the above reactions are unknown, but it is worth noting that introduction of SmI_2 to a preformed solution of 2 in its lithium salt form will not suffice for ketone addition. Furthermore, the exact sequence of reagent addition is critical. Even though bis-sulfones are cleaved rapidly and in good yield by SmI_2 , subsequent addition of ketone generates little, if any, adduct. It is likely that some samarium species¹³ with Lewis acid character is generated *in situ* or that the reaction does not involve a discrete anion but rather a radical or radical anion.¹⁴ With respect to the latter, such an intermediate could not be intercepted with a terminal olefin (Table I, entry 10).

General Procedure: Bis-phenylsulfone (1 mmol) in 4 ml of THF is added dropwise to a room temperature, dark blue mixture of SmI_2^{15} (3 mmol) and ketone (1 mmol) in 30 ml of THF under argon. A color change to yellow, usually within 5-15 min, heralds complete consumption of the reactants. The mixture is diluted with Et_2O and sequentially washed with 5% hydrochloric acid, saturated sodium thiosulfate solution, water, and brine. After drying over Na_2SO_4 , the solvent is evaporated *in vacuo* and the residue chromatographed on SiO_2 to afford the β -hydroxyphenylsulfone in the yields summarized in Table 1.

Acknowledgment: Supported financially by the USPHS NIH (DK-38226) and the Robert A. Welch Foundation.

References and Notes

- 1. Yu, J.; Cho, H.-S.; Chandrasekhar, S.; Falck, J. R.; Mioskowski, C., preceding report in this issue.
- For a versatile synthesis of cyclic and acyclic geminal bis-phenylsulfones see, Yu, J.; Cho, H.-S.; Falck, J. R. J. Org. Chem. 1993, 58, 5892-5894.
- Reviews: Simpkins, N.S. Sulphones in Organic Synthesis; Pergamon Press: New York, 1993; Chap. 3, pp 100-182. Stoyanovich, F. M. "Sulfur-Stabilized Carbanions and Their Synthetic Use." In Chemistry of Organosulfur Compounds; Belen'kii, L.I. (ed); Ellis Horwood: New York, 1990; pp. 118-125.
- 4. Kocienski, P.J. Chem. Ind. 1981, 548-551.
- 5. Kocienski, P.J. Phosphorus and Sulfur 1985, 24, 97-127. Achmatowicz, B.; Baranowska, E.; Daniewski, A. R.; Pankowski, J.; Wicha, J. Tetrahedron 1988, 44, 4989-4998.
- Chloromethyl sulfides react with carbonyl compounds in the presence of SmI₂ to give β-hydroxythioethers: Yamashita, M.; Kitagawa, K.; Ohhara, T.; Iida, Y.; Masumi, A.; Kawasaki, I.; Ohta, S. Chem. Lett 1993. 653-656.

- (a) SmI₂ also promotes the reductive desulfonylation of mono-phenylsulfones, but only in the presence of HMPA: Künzer, H.; Stahnke, M.; Sauer, G.; Wiechert, R. *Tetrahedron Lett.* 1991, 32, 1949-1952.
 (b) It is also reported to induce the reductive elimination of β-hydroxyimidazolyl sulfones whereas phenylsulfones are inert: Kende, A.S.; Mendoza, J. S. *ibid.* 1990, 31, 7105-7108.
- 8. Satisfactory spectral data (¹H and ¹³C NMR, MS) were obtained for all new compounds using chromatographically homogeneous samples.
- 9. Stereochemistry established by desulfonylation⁷^a and comparisons with standards¹⁰ of known configuration.
- 10. Maruoka, K.; Itoh, T.; Yamamoto, H. J. Am. Chem. Soc. 1985, 107, 4573-4576.
- β,γ-Unsaturated sulfones are more stable than the α,β-isomer: Magnus, P.D. Tetrahedron 1977, 33, 2019-2045.
- 12. An intramolecular version of this reaction has been described recently see: Trost, B.M.; Neilsen, J.B.; Hoogsteen, K. J. Am. Chem. Soc. 1992, 114, 5432-5434.
- 13. For example, Sm(III) can behave as a Lewis acid: Girard, P.; Namy, J.L.; Kagan, H.B. J. Am. Chem. Soc. 1980, 102, 2693-2698.
- For excellent discussions of the mechanism for the related addition of alkyl halides to ketones see: ; Namy, J.L.; Collin, J.; Bied, C.; Kagan, H.B. Synlett 1992, 733-734; Curran, D.P.; Fevig, T.L.; Jasperse, C.P.; Totleben, M.J. Synlett 1992, 943-961.
- 15. Available from Aldrich Chem. Co.as a 0.1 M solution in THF.

(Received in France 11 March 1994; accepted 1 June 1994)